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Influence of Joint Relaxation on Deterministic
and Stochastic Panel Flutter

R. A. Ibrahim* and D. M. Beloiu®
Wayne State University, Detroit, Michigan 48202

and

C. L. Pettit
U.S. Air Force Research Laboratory, Wright—Patterson Air Force Base, Ohio 45433

The influence of boundary condition relaxation on two-dimensional panel flutter is studied in the absence
and presence of random pressure differential and in-plane loading. The boundary-value problem of the panel
involves time-dependent boundary conditions that are converted into autonomous form using a special coordinate
transformation. The resulting boundary conditions are combined with the governing nonhomogeneous, partial
differential equation that includes the influence of the boundary condition relaxation. The relaxation and system
nonlinearity are found to have opposite effects on the time evolution of the panel frequency. Furthermore, the
damping of the panel exhibits a critical value governed by the relaxation parameter, below which the damping has
a destabilizing effect and above the critical value it has stabilizing effect. The influence of random in-plane loading
and random pressure differential is estimated using Monte Carlo simulation. Stochastic stability boundaries under
random in-plane loading are estimated below and above the critical aerodynamic pressure. Depending on the system
damping and dynamic pressure, the time evolution of the panel frequency content can increase or decrease with
time as the boundary conditions approach the near simple support case.

Nomenclature
a = panel length
doo = speed of sound, /(¥ Peo/Poo)
B(7) = Brownian motion
c = linear viscous damping coefficient
cp = specific heat at constant pressure
Cy = specific heat at constant volume
D = panel bending stiffness, EA®/[12(1 — v?)]
E = Young’s modulus
h = panel thickness
k = slope of relaxation curve at the point of inflection
M = Mach number, Uy, /ax
my = panel mass per unit length
N,o(t) = -external in-plane load per unit spanwise length
Poo = undisturbed free gas stream pressure
qi(t) = generalized coordinates
Uy = undisturbed gas flow speed
w(x,t) = panel deflection
z; (1) = relaxation parameter, D /ac;(t)
a; (1) = torsional stiffnes parameters
y = ratio of specific heat coefficients, C,,/C,
Apo(¢) = air pressure across the panel, which consists of static
Ap, and random Ap(¢) components, po + Ap(t)
Poo = undisturbed free gas stream density
¢ = viscous damping factor
s = mass parameter, /(1/M)
uw = air-to-panel mass ratio, p.ca/m,
v = Poisson’s ratio
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Introduction

ANEL flutter under deterministic and stochastic airflow has

been extensively studied based on simplified modeling of the
structure, aerodynamics, and boundary conditions. The interaction
between the panel elastic force and the aerodynamic pressure causes
the equations of motion to be non-self adjoint. The aerodynamic
pressure fluctuates randomly, and the panel responds as a linear
filter. As the flow pressure increases above a critical value, the
panel motion changes from a random state to a highly ordered state
with increasing amplitude. However, when the panel is subjected
to a compressive in-plane load, in addition to the random aerody-
namic pressure, the response can undergo complex motions known
as chaos.!"? According to Fung,® a primary difference between the
linear theory of panel flutter and experimental results is that experi-
mental observations reveal stochastic forced oscillations as a result
of turbulence under which several modes are excited. Another im-
portant difference is the influence of nonlinearities of both structural
and aerodynamic forces.

Few attempts*~® have been made to examine panel flutter and
its sensitivity to turbulent pressure fluctuations within the bound-
ary layers. Although Eastep and McIntosh* considered structural
and aerodynamic nonlinearities, they employed a third-order piston
theory to simplify the aerodynamic loading terms in the governing
equations. Their deterministic results revealed that the two types of
nonlinearities have different consequences on the panel response.
The nonlinear interaction between in-plane stresses and transverse
deformation provides a stabilizing effect on the panel motion in that
it acts to restrain further deformation. The nonlinear aerodynamic
loading, on the other hand, has a destabilizing effect in that it acts
to increase the panel deformation.

Olson’ and Vaicaitis et al.” utilized Monte Carlo simulation for
estimating the response statistics of a panel undergoing large defor-
mation under turbulent boundary-layer pressure. They decomposed
the pressure field acting on the panel into three components: the ex-
ternal flow (radiation) pressure, the internal (cavity) pressure, and
the random pressure resulting from the boundary-layer fluctuations.
The random pressure is represented by a stationary multidimen-
sional Gaussian process, which has a specified cross spectral density.
This random process is then simulated by a series of cosine func-
tions with weighted amplitudes, almost evenly random frequencies,
and random phase angles that are uniformly distributed between 0



IBRAHIM, BELOIU, AND PETTIT 1445

and 2. The effect of the cavity on panel response was examined
for subsonic and supersonic flow regimes. The cavity acts as an air
spring resisting the modes that tend to compress the air, thus raising
their modal frequencies. For subsonic flow, the response is reduced
substantially by the presence of the cavity. However, for supersonic
flow flutter occurs at a lower dynamic pressure with a cavity than
for the case without a cavity. This is because the first mode fre-
quency is raised by the aerodynamic spring effect producing an
earlier coupling between the first and second mode frequencies and
thereby induces flutter. The increase of the boundary-layer inten-
sity is found to significantly modify the panel response especially
for low air pressure parameter. Other numerical techniques, such
as finite element methods, have been used for computing nonlinear
flutter characteristics of panels in supersonic flow.”

Ibrahim et al.!” and Ibrahim and Orono!! studied the stochastic
flutter of nonlinear panels in supersonic flow subjected to random
in-plane loading. They considered two, three, and four modal in-
teractions. The mean square stability boundaries and response mo-
ments were determined as functions of the spectral density of in-
plane loads, aerodynamic pressure, air-to-structure mass ratio, and
structural damping ratios. For equal modal damping coefficients, it
was found that the damping stabilizes the panel in the mean square
sense. However, a paradoxical effect of the damping was found only
for unequal damping coefficients where the effect is nonbeneficial.
The nonlinear response statistics were obtained in the time domain,
and the steady state revealed that the response process is strictly
stationary.

Most of the analyses of panel flutter are based on ideal bound-
ary conditions such as clamped or simply supported edges. How-
ever, most fasteners do not satisfy absolute boundary conditions. In
addition, fasteners subjected to vibration often lose much of their
preload; this is known as relaxation. First there is a slow loss of
preload caused by some of the relaxation mechanisms. Vibration
increases relaxation because wear and hammering take place dur-
ing vibration. Vibration-induced loosening and relaxation effects
cause time-dependent boundary conditions and depend on the level
of structural vibration. Recently, Ibrahim and Pettit'? presented an
extensive review of dynamic problems associated with joint relax-
ation and uncertainties.

However, a limited number of studies have considered the influ-
ence of uncertainties in aeroelastic structures and their boundary
conditions. For example, Poiron'? introduced uncertainties in ana-
lyzing the flutter characteristics of aircraft models and used a first-
order perturbation method and Monte Carlo simulation to determine
the flutter probability for different values of flow speeds and mass
parameters. The effect of uncertainty in the boundary conditions,
combined with the variability of material properties, on nonlinear
panel aeroelastic response was studied by Lindsley et al.'*! Pinned
and fixed boundary conditions were modeled as limiting cases of
rotational springs on the boundary, which possess zero and infinite
stiffness, respectively. Accordingly, rotational spring stiffness was
used to parameterize the boundary conditions. Parametric uncer-
tainty was examined by modeling variability in Young’s modulus
and the boundary conditions. Variability in the boundary conditions
was restricted to a single value along the plate boundary edges for
each realization. It was reported that for values of dynamic pressure
in the deterministic limit-cycle oscillation range the variability in
the boundary conditions affects the panel deflection in an essentially
linear manner. However, for values in the neighborhood of bifurca-
tion point the relationship is nonlinear. Variation in the boundary
conditions results in a softening effect of the clamped panel and
thus induces an increase in the amplitude of plate oscillations.

Although Lindsley et al.'*!3 considered the effect of variability in
boundary rotational stiffness, none of the studies just cited included
the influence of time-dependent boundary conditions on the flutter
characteristics of aeroelastic structures. Relaxation, or the loss of
preload in mechanical joints, is a common problem in vibrating
structures that must be addressed to ensure that the structure will
perform satisfactorily throughout its expected life. The present work
is an extension of the work of Ibrahim et al.'®!16 and Qiao et al.!”
to examine the influence of relaxation of boundary conditions on

the panel flutter characteristics such as modal natural frequencies
and limit-cycle amplitudes and stochastic stability under random
in-plane loading.

Nonlinear panel flutter with relaxation in the boundary conditions
is studied based on a phenomenological model of joint preload relax-
ation and random aerodynamic pressure superposed on piston the-
ory loads. The random pressure is characterized by a power spectral
density for which empirical expressions can be used, or an assumed
Markov field can be introduced. The use of empirical expressions
requires numerical simulation of the equations of motion, and the
Markov field approximation yields a set of differential equations
for the response moments. In view of the nonstationarity imposed
by joint relaxation and the multidimensionality of the problem, it is
not possible to obtain a closed-form solution for the panel response
statistics. Instead, we will resort to Monte Carlo simulation.

The conventional boundary-value problem of the panel involves
time-dependent boundary conditions that are converted to an au-
tonomous form using a special coordinate transformation introduced
by Qiao et al.'” The resulting boundary conditions are combined
with the governing nonhomogeneous, partial differential equation
that includes the influence of the boundary condition relaxation. The
analysis is restricted to two-mode interaction through a projection of
the governing equations onto the first two baseline structural modes.
Results include the influence of boundary condition relaxation on the
panel modal frequencies, limit-cycle amplitudes in the time and fre-
quency domains, and mean square stability. Ibrahim et al.'® showed
that when only deterministic aerodynamics are included this model
indicates that the relaxation and system nonlinearity have oppo-
site effects on the frequency evolution of the panel. In this paper,
these observations will be extended by examining the time- and
frequency-domain dependence of the panel’s mean square response
on the pressure differential spectral density and aerodynamic pres-
sure. The frequency content of the panel’s response in the first two
modes will be examined through the spectrogram, which will reveal
the relaxation-induced nonstationarity of the panel flutter.

Analysis

Consider a two-dimensional panel exposed to supersonic gas flow
as shown in Fig. 1. Based on the quasi-steady, supersonic theory,
the deflection of a two-dimensional panel undergoing cylindrical
bending is caused by the interaction of inertia, elastic, and aerody-
namic forces. The governing equation of motion can be developed
using Hamilton’s principle. To estimate the work done by aerody-
namic loading, the pressure on the panel is estimated by using piston
theory with quadratic nonlinearity:

P U~ (dw 1 ow
Ap = — = X — _
P=P=Pe= "y (8x MR
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y+D|[ow dw dw , [dw
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Accurate representation of the pressure is to include cubic nonlin-
earity in the preceding expression. However, because of boundary
condition relaxation, the analysis will be too complicated, and the
effect of cubic nonlinearity will be considered in a separate study.

The governing nonlinear equation of motion for the panel is de-
veloped using Hamilton’s principle, which yields
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?gg - boundary with relaxation

Fig. 1 Schematic diagram of a two-dimensional panel exposed to supersonic flow supported on boundaries with relaxation.

Apo(t) = po+ Ap(t) is the air pressure across the panel, which
consists of static p, and random Ap(¢), components. N,o(t) =
Nyo+ N,(¢) is the external in-plane load per unit spanwise length
and can be random in time. Equation (2) is subject to the boundary
conditions

3%w(0, 1) ow(,r)
DT_O[](”T =0 (33)
w(0,1) =0 (3b)

’w(a, t) dw(a,t) _
DT +0[2(t)T =0 (3C)
w(a,t) =0 (3d)

where «; () and o, (#) measure the end slopes and represent tor-
sional stiffness parameters such that for o (#) = «; (f) = oo we have
the case of purely clamped—clamped panel. On the other hand,
o) (t) =a;(t) =0 corresponds to the case of simple supports. In
real situations, both «;(¢) and o, (¢) do not assume these extreme
cases, and their values are very large for clamped supports or very
small for simple supports. In the dynamic case boundary conditions
(3a) and (3¢) are nonautonomous. To convert these conditions into
an autonomous form, we introduce the following transformation of
the response coordinate:

2
wx, 1) = [(2) +2g1(zl,zZ)§ +g2<zl,zZ)}u(x,r)

= ¢(x; 21, 22)u(x, 1) 4

where the dimensionless parameter z;(t) = D /aw;(t), i = 1,2, rep-
resents the ratio of the bending rigidity to the torsional stiffness
of the joints. The functions g;(z, z2) and g,(z;, z2) are chosen to

render the boundary conditions autonomous for the new coordinate
17

u(x, t). Possible expressions of these functions'’ are
(21, 22) = _¢
81(Z1,22) = 2(1+ 22, + 220
2z1(1 +4z2)
21,8) = —"—F"7— 5
82(z1, 22) 1122 125 )]

In this case, the boundary conditions (3) become

3%u(0, 1) _ d%u(a,t) _
ax2 axr

0, w(©,0) =u(a,t) =0 (6)

Introducing the nondimensional parameters
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Eq. (2) becomes
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The preload relaxation process is phenomenologically modeled
based on experimental results. 8 First, it is assumed that the torsional
stiffness parameters are functions of the number of vibration cycles
n=n(t):

_ aa; (n) _ 1
D zin)

(¢))

where the overbar denotes a dimensionless parameter. An explicit
analytical expression for the parameters ¢; (n) can be obtained from
experimental records.'® These experimental measurements revealed
the trend of the relaxation process as a slow drop between an orig-
inal and an asymptotic value of the joint stiffness. An appropriate
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elementary function that emulates this behavior can be selected in
the form

a(n) = A + Btanh[—k(n — n,)] )

where the subscript i has been dropped and 7. is a critical number of
cycles, indicating the location of the inflection point with respect to
the origin n = 0. The parameter £ is associated with the slope of the
curve at point n =n,. The constants A and B are determined from
the initial and final values of the stiffness parameter by solving the
two algebraic equations

@(0) = A + B tanh[kn,] (10a)
@(c0) = A+ B (10b)

Solving for A and B and substituting in relation (9) gives

&(n) =(00) +[&(0) —&(00)]{ L } an

1+ tanh(kn,)

The parameters @ (0) and a(co) are obtained from the experi-
mental curve. The slope parameter k£ can be found by taking the
derivative of Eq. (11) with respect to n, that is,

da(n)/onl,,

= m[l + tanh(kn,)] 12)

One can write an expression for z(t) by using relations (8) and (11)
in the form

-1
1+ tanh[—x (t — 7.)] } (13)

=202 2o — (Zo — Z
2(7) 0 { 0 — (Zo ) I+ tanh(x 7))

where Zy=2(0); Zo =2(00); x =(@)/2wk, where () is the
mean value of the response frequency and can be taken as the center
frequency. The phenomenological representation given by Eq. (13)
can be used for any initial preload and will cause the panel to expe-
rience nonstationary behavior.

Galerkin’s method is applied to discretize Eq. (7) by assuming
the general solution in the form

N
(%, 1) = an(r) sinnrx (14)

n=1

where N is the total number of modes and ¢, (t) are the generalized
coordinates. For the present study, we consider two-mode interac-
tion, that is, N =2. Furthermore, it is assumed that z; =z, =z/2,
which makes the boundary stiffness values symmetric. The follow-
ing two nonlinear ordinary differential equations are obtained:
q/(®) + (¢an + IV1)q| () + [anNw(0) + alg (7)

+ (aiuh + a15)q2(t) + Bobig) (1)

+ Bob12¢5(1)* + B3bi3q,(1)q>(t) + B3b1aqi ()g5(7)

+ Bib15q1 (1)’ 4 Bibi6qi (T)q2(1)” + Babi7q1 (1)’

+ Buabisqa(t)* = [12po(t) /7 ][1/co(2)] (15a)
3y (T) + (¢az + EVA)g5 (1) + [anNo(0) + aslgx(t)

+ (azr + ax5)q1(T) + Byb21q1()q5 () + B3byg (t)q (7)

+ B3b23g2(7)q5(T) + Babargi(1)g2(7)

+ B1b23¢2(1)’ + Bibasq1 ()%g2(v) = 0 (15b)

where a prime denotes differentiation with respect to the nondi-
mensional time parameter 7, the coefficients a;; and b;; are func-
tions of the relaxation parameter z, which is time dependent,

and
7451 + 72(1 + 62)] )
ay = R ap =77, a;;=a
11 3+7T2(1+6Z) 12 13 11
16(26 + 972z) 64
ay = ——T—"FF"T"""» ays = ——————————————
9[3 + 72(1 + 62)] 3[3 + 72(1 + 62)]
_16[728 +277*2% + 607 % (=1 + 22)]
e 27733 + 73(1 + 62)]
_ 64[380,408 + 16,8757*z% + 32,1007 (—1 + 22)]
2 84,37573[3 + w3(1 + 62)]
o — 45 + 3072z + 74 (1 + 10z + 30z?)
B S7[3 + 72(1 + 62)]
b 1395+ 84072z + 1674(1 + 10z + 3072)
aa 1607[3 + 72(1 + 62)]
1
bis = @[—15 +1072(1 + 32) + 7*(1 + 10z + 30z2)]
11 1 2z
b = _E + 67'[2(1 +3z2) +7T4<E + ? +2ZZ>
b _ 81488+ 2747 4+ 1272(=2 + 1372)]
7= 277[3 + 72(1 + 62)]
yo _ _3212783.006 + 118,1257472 + 30072(=734 + 1693z7)]
8= 84,3757[3 + w2(1 + 62)]
@) 34+ 72+ 67127
)=
co 122
ay = 16ay;, ay =4ap,, a3 = ds
64(14 +97%z) 4
y = ——, ars = 4a
24 O3+ 472(1 + 62)] 25 15
by = 8by, by = —4byy
3 32(5 + 3722)
BT T 9n3 + 4n2(1 + 62)]
. 256[127,688 + 16,875742% + 30072 (=2 + 2297)]
4 = —

84,3757 [3 + 47 2(1 + 62)]

1 2 4 8z
bys=——+n* - +2 H =+ = 487
05 4+7r<3—|— z>+n(15+3+z

2 1 2z
b26:—1+ﬂ2<§+21>+7T4(E+?Z+222> (16)

Equations (15) are solved numerically in the time domain for a
typical relaxation curve. The resulting solution is given in terms of
the transformed response i, or rather in terms of its modal coordi-
nates g;, i = 1, 2. One should estimate the panel modal response in
terms of its physical generalized coordinate:

N
w(x, 1) = Zc},,(r) sinni (17)

n=1

w(x, 1) =p(Xu(X, 1),

where ¢ =[¥>+2g(z1, 22)% +£2(z1. 22)] and g; are given by
Eq. (5). The relationship between the physical coordinates g, (t)
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and the generalized transformed coordinates g, (7) is

N N
Z Gn(v) sinnmx = [x2 4 281 (2)% + g2(2)] Z gn(t) sinnmx

n=1 n=1

18)

Multiplying both sides of Eq. (18) by sinmmx, m =1, 2, and inte-
grating both sides,

Y
/ E G (t) sinnmix sinmrx | dx
0

n=1

| N
=/ {[)22—1-25’1(2))?+g2(z)]2qn(r)sinnnisinmm?}dx
0

n=1

(19)

gives the relation between coordinates
621(7) _ Th(z) Tn@||q@) 20)
g2(7) i(z) Tn(2)] |2(0)

2

where

Th(2) =Tn() = T(2) =Tn(@ =0 (21

2472’
Relation (20) gives

2
4i1(1) = —5——-q1(7),

2

4:(1) = ———q(1)  (22)

g T
2+ 72z 2+ w2z

Deterministic Analysis
The deterministic analysis is carried out based on constant val-

ues of in-plane force N,o(7) = N, and constant external pressure
Po(t) = po. The influence of boundary conditions relaxation on the
panel eigenvalues can be examined by dropping the nonlinear and
nonhomogeneous terms from modal equations (15). The depen-
dence of the real and imaginary parts of the modal eigenvalues
on the dynamic pressure A and relaxation parameter z is shown in
Figs. 2a and 2b by three-dimensional diagrams for damping param-
eter £ =0.0, mass parameter ¢ = 0.0, and static axial load param-
eter N,o=0. It is seen that the real parts are zero up to a critical
value of the dynamic pressure, depending on the value of the re-
laxation parameter z, above which one becomes negative and the
other positive indicating the occurrence of panel flutter. Note that
the value z =0 corresponds to clamped—clamped panel, and the
corresponding critical dynamic pressure is greater than any case
with z > 0. For nonzero positive damping and mass ratio, both real
parts are negative up to a critical dynamic pressure value above
which one remains negative and the other crosses the A axis, and
then assumes positive value. Figure 2b shows the imaginary part,
which represents the natural frequencies of the two modes. The
dependence of the real part on the dynamic pressure for differ-
ent values of relaxation parameter is shown in Fig. 3a, where the
crossing to positive values signals the occurrence of flutter. As ex-
pected, as the panel nears clamped boundary conditions the oc-
currence of flutter is delayed for relatively higher values of dy-
namic pressure. The dependence of the natural frequencies of the
first and second modes on the relaxation parameter z is shown in
Figs. 3a and 3b for different values of dynamic pressure parameter.
For a fixed value of dynamic pressure, the first-mode natural fre-
quency decreases with the relaxation parameter but increases with
dynamic pressure as shown in Fig. 3a. On the other hand, the nat-
ural frequency of the second mode (Fig. 3b) decreases with the
relaxation parameter and with dynamic pressure as well. Note that
the second mode experiences a drop in its natural frequency up to

==
==
S ‘
= T 1Y
IRl L N
£ ~

e

£

Z

ST

A GRS
Yoy

b) 0
Fig. 2 Dependence of real and imaginary parts of the panel natural

frequency on dynamic pressure and boundary condition relaxation pa-
rameter z for ¢ =0, ( =0, Ny =0: a) real and b) imaginary parts.

near the critical dynamic pressure above which its value increases
again.

The dependence of the critical value of aerodynamic pressure on
the in-plane static load N,(, damping ratio ¢, and relaxation param-
eter z, is shown in Figs. 4-6, respectively. These figures represent
the boundaries of panel flutter for different parameters of relaxation
parameter as shown in Figs. 4 and 5. As expected, the compression
in-plane loading results in a reduction of the critical flutter speed.
The clamped panel (z < 1) requires more in-plane compression load
to reach its flutter speed. Figure 5 shows the dependence of flutter
speed on the damping parameter ¢ . For a given relaxation parameter,
there is a critical damping ratio . above which the damping be-
comes beneficial and the critical speed increases with the damping.
For ¢ < ¢ the damping is nonbeneficial and results in a reduction
the flutter speed. The critical damping ratio is determined by setting
dx/d¢ =0, and the dashed curve in Fig. 5 shows the locus of the crit-
ical damping ratio. For equal modal viscous damping coefficients,
the damping is known to stabilize the panel. However, as shown
in Ibrahim et al.,'® and the cited references therein, unequal modal
damping coefficients result in a paradoxical effect. Figure 6 shows
the dependence of the flutter speed on the relaxation parameter for
different values of static in-plane loading. The destabilizing effect
of damping is shown in Fig. 7, where the instability region increases
as the damping increases then decreases depending on the relaxation
parameter.

Figure 8 shows the dependence of the limit-cycle-oscillation
(LCO) amplitude of the first mode on the dynamic pressure for
different discrete values of the relaxation parameter z in the form
of supercritical bifurcation. The two ideal cases of purely simple—
simple and clamped—clamped boundary conditions are plotted by
solid curves. Note that the relaxation results in moving the bifur-
cation point to lower values of dynamic pressure. Figure 9 shows
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Fig. 3 Dependence of modal natural frequencies on the relaxation pa-
rameter for different values of dynamic pressure parameter A and for
¢=0.01, (=0.1, Ng=0: a) two-dimensional representation of the real
parts, b) first mode, and c) second mode.

the dependence of time evolution of the LCO amplitude on the dy-
namic pressure in three-dimensional plots for ¢ =0.001, ¢ =0.1,
and N, =0. Note the time axis gives also a measure of the relax-
ation parameter.

The panel experiences flutter above the critical value of dynamic
pressure depending on the relaxation parameter. The inclusion of
nonlinearities in Eq. (15) causes the flutter to achieve a limit cy-
cle. However, because of relaxation time history record shown in
Fig. 10a, the panel response experiences nonstationary limit-cycle
oscillations as the dynamic pressure exceeds its critical value. For
example, Fig. 10b shows the panel first-mode time-history response
record for dynamic pressure A =260 < A, where A, corresponds to
the critical dynamic pressure for absolute clamped—clamped panel.
It is seen that the two modes remain stable until the relaxation
brought them into near simply support condition at which they start
to experience LCO. For dynamic pressure values that exceed the
critical value of the clamped condition, the panel experiences un-
steady LCO during the relaxation process as shown in Fig. 10c. It
is seen that the amplitude of LCO increases with time as the panel
boundary conditions change from clamped to near simple support

500 .
1=0.1
/
400 Z=0.00] )K\
UNSTABLE\\\ 1
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Fig. 4 Boundaries of panel flutter on the )\—Np plane for different
values of relaxation parameter and for ¢ =0.001, ¢ =0.1.
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Fig. 5 Boundaries of panel flutter on the A — ¢ plane for different
values of relaxation parameter and for Ny =0.0, ¢ =0.1: ———, the criti-

cal damping ratio that separates stabilizing and destabilizing damping
effects.

conditions. In all time-history records the LCO does not have zero
mean value because of the pressure differential.

The fast Fourier transform (FFT) and spectrogram plots of the
first mode shown in Figs. 11a—11c for different values of dynamic
pressure reveal that the frequency content includes one spike at zero
frequency, because of the static pressure differential, and another
band-limited response covering a frequency band whose band de-
pends on the dynamic pressure. This frequency band reflects the time
variation of the panel frequency with time. This is demonstrated by
inspecting the corresponding spectrograms. The time evolutions of
the frequency content represented by the spectrograms in Figs. 10b
and 10c demonstrate the correlation between the variation of the
frequency with the relaxation process and dynamic pressure. For
the cases A =500, ¢ =0.01, and A =600, ¢ =0.03, the response
frequency increases as the joint passes through relaxation. On the
one hand, the relaxation results in a reduction of the panel natural
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Fig. 6 Boundaries of panel flutter on the A —z plane for different values
of in-plane load Ny and for ¢ =0.001, { =0.1.
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Fig. 7 Boundaries of panel flutter on the A\ —z plane for different values
of damping factor showing the reversal effect of damping for { =0.1,
Ny=0.
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Fig. 8 Bifurcation diagram of the first mode for different values of
relaxation parameter showing the absolute cases of simply-simply and
clamped—clamped panels for ¢ =0.001, { =0.1, Py =1, and Ny =0.
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Fig. 9 Three-dimensional plot of the first-mode amplitude time evo-
lution and its dependence on dynamic pressure for ¢ =0.001, (=0.1,
Py=1,and Ny =0.
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Fig. 10 Time-history records of a) relaxation parameter z and b) and

¢) first-mode amplitudes for Py =1, where b) A=260< A, (=0.01,
¢=0.1, Ng=0; and ¢) A=500> A\, ¢ =0.001, { =0.1, Ny =0.

frequency. On the other hand, the nonlinearity of the panel is of a
hard spring characteristics and causes an increase in the frequency
with the LCO amplitude. It appears that the nonlinearity overcomes
the softening effect of relaxation for the two cases of Figs. 11a and
11c. For the case A =500, { =0.001 shown in Fig. 11b, the relax-
ation is almost in balance with the nonlinearity, and the frequency
content exhibits a very slight drop over time.

Random Analysis

The panel is exposed to turbulent pressure fluctuations within the
boundary layers. These fluctuations are random, and the pressure is
characterized by a power spectral density for which empirical ex-
pressions can be used, or an assumed Markov field can be introduced.
As mentioned in the Introduction, experimental observations reveal
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Fig. 11 FFT plots and spectrograms: a) A=500, ¢=0.01, & =0.1,
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stochastic forced oscillations because of turbulence under which
several modes are excited. In this section we consider randomness
in the in-plane loading and in the pressure differential. The influence
of each type will be examined separately.

In Egs. (15) the in-plane loading N,o(tr) and pressure differ-
ential po(7) will be represented by a mean value superimposed
with a random component, that is, N,o(7)= Ny + N,(r), and
Po(t) = po+ p(t), where N, () and p(t) are independent Gaus-

sian wide-band random processes with zero means and delta corre-
lation functions

Ry(At) = E[N,(t)N,(t + At)] = Sy6(AT) (23a)
R,(AT) = E[p(r)p(r + AT)] = S,8(AT) (23b)

that s, they are Gaussian white-noise processes with spectral density
levels Sy and S, respectively, and § (A7) is the Dirac-delta function.
The white-noise processes N, (t) and p(t) can be expressed as the
formal derivative of the Brownian motions

N.(1) = oy ngr(t) (24a)
dB,
) =0, é:” (24b)

In this case, Egs. (15) can be written in terms of [td stochastic inte-
grals. Through the coordinate transformation {q, g1, g2, ¢2} = { X1,
X5, X3, X4} =X, Egs. (15) take the It6 form

m

dXi(1) = fiX, 1) dr + Y Gy;(X, ) dB;(2),

i=1

i=1,2,3,4

(25)

Although the response coordinate vector X constitutes a Markov
process, it is not possible to derive a closed-form solution of the
corresponding Fokker—Planck equation.'® Because of the paramet-
ric excitation term in the in-plane loading term N, (), the moment
closure schemes will not give reliable results. Owing to the nonsta-
tionarity of the panel response, it is convenient to carry out Monte
Carlo simulation® to estimate the response mean squares. The time-
history records will be processed to determine the autocorrelation
function in order to determine the response power spectra and spec-
trograms.

Influence of in-Plane Random Loading

Under random in-plane loading and constant differential pressure
the stability boundary in the (Sy, z) plane is estimated for three dif-
ferent values of dynamic pressure below the critical value, that is,
A < A The stability boundaries shown in Fig. 12 reveal that as the
dynamic pressure increases, to any value below the critical value,
the panel becomes more stable. This means that the airflow provides
an additional damping to the panel to stabilize it. The dependence of
the first-mode mean square response on the in-plane power spectral
density for zero dynamic pressure is shown in Fig. 13a for different
values of relaxation parameter z. It is seen that the bifurcation point
for the case of nearly clamped—clamped boundaries (z =0.001) oc-
curs at a larger value of in-plane load level than the case of the near

B e o B e ABERRE e e

0 20 40 60 80 100 120 140 160 180
S,

N

Fig. 12 Stochastic stability boundaries under in-plane random excita-
tion for different values of dynamic pressure parameter A and system
parameters py =0, { =0.001, ¢ =0.1, Ny =0.
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Fig. 13 Dependence of first-mode mean square response on in-plane
power spectral density level for different values of relaxation parameter
zand ¢ =0.001, { =0.1, pp =Ny =0: a) A=0 and b) A =500.

simply—simply supported panel (z = 1). This trend is maintained for
any value of dynamic pressure A < A;. For A > A, the bifurcation
point disappears, and the panel possesses a nonzero mean square
response at zero in-plane level as shown in Fig. 13b for A =500.
At Sy =0, the value of the response mean square increases as the
boundary conditions approach the nearly simply supported case.

The time-history records of the panel first-mode displacement and
its mean square are shown in Figs. 14a and 14b, respectively, for
A =500 and in-plane spectral density Sy =40. Monte Carlo simula-
tion was carried out for an ensemble of 250 excitation samples, and
the response statistics were determined in the time and frequency do-
mains. The estimated mean square responses reveal nonstationarity
during relaxation, but the nonstationarity diminishes before and af-
ter relaxation. The power spectra and spectrograms were estimated
for two different damping values £ =0.001 and 0.01 (Figs. 15a
and 15b, respectively). It is seen that for very small damping both
structural nonlinearity and relaxation of boundary conditions com-
pensate each other, and the variation of the frequency content is
very small. By increasing the damping factor, the structure non-
linearity overcomes the influence of relaxation, and the frequency
content increases as the boundary conditions become nearly simply
supported.

Influence of Random Pressure Differential

Under random pressure differential the mean square responses
of the panel modes are nonlinearly proportional to the spectral
density of the pressure. However, careful inspection of Figs. 16a
and 16b reveals that for small excitation level the mean squares
are linearly proportional to the excitation spectral density. This is
true for all values of relaxation parameter z and dynamic pres-
sures below the critical value A < A.. Note that for A =100 the
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Fig. 14 Time-history records of first-mode a) amplitude and b) its

mean square under in-plane random excitation for A =500, ¢ =0.001,
¢=0.1,p9=1, N9y =0, and Sy =40.

M
. 10
g va\/\ Mﬁﬂ/ \\'\“"“"“M

PANAAANANA
10°
0 10 20 30 20 50 60
*
(0]
60 . ' , .
a0k 1
*
3
20 .
0 L 1 1 1
50 100 150 200
a) T

" W \x»v“
K]
)
2
[e
o
10°} 1
1 1 i i 1
0 10 20 30 40 50 60
*
(0]
60 ; . ; :
40t R i
*
3
20t 1
0 L 1 1 1
50 100 150 200
b) T

Fig. 15 Power spectra and spectrograms for A =500, ¢=0.1, py=1,
Np=0, and Sy =40: a) { =0.001 and b) ¢ =0.01.

mean square response is significantly reduced from its value at
A = 0 because of the aerodynamic damping. Above the critical value
of dynamic pressure, that is, A > ., the mean square response
is nonzero at zero random pressure because the panel LCO takes
place, as shown in Fig. 16c. Figure 17 shows the reversal ef-
fect of the dynamic pressure for A < A, where mean square re-
sponse decreases with the excitation, and A > A, where the opposite
is true.



IBRAHIM, BELOIU, AND PETTIT 1453

Elg;]

a)
0.25 : : S :
0.20 === S T L
0.15 F------ T s S
2 i ' : H , —
Elg’l | zdios A0
010 TN LT L
0.05 Jo-mm Gt e

c) SP

Fig. 16 Dependence of first-mode mean square response on pressure
differential power spectral density level for different values of relaxation
parameter z and ¢ =0.001, ¢ =0.1, o =Ny =0: a) A=0, b) A=100, and
c) A=500.

Elg}]

Fig. 17 Dependence of first-mode mean square response on pressure
differential power spectral density level for different values of dynamic
pressure parameter below and above the critical value A, and for
¢=0.001,(=0.1,po=Ny=0,and z=1.
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Fig. 18 Time, frequency, and time-frequency domains of panel flut-
ter: a) time-history records of panel first two modes under random
pressure differential b) power spectral density and c) spectrogram of
the panel first mode under random pressure differential for ¢ =0.001,
¢=0.1,p9=1,N9g=0, =500, and S, =40.

Figure 18a shows the time-history records of the two modes
under excitation spectral density S, =40 and dynamic pressure
A =500 > A,.Itis seen that the first mode exhibits more randomness
than the second mode because the first mode acts as a nonlinear filter
to the second mode as revealed from the two modal equations (15).
Figures 18b and 18c show the corresponding response power spec-
tral density and spectrogram for the first mode.

Conclusions

The influence of boundary conditions relaxation on a two-
dimensional panel flutter has been studied under deterministic and
random conditions. The panel flutter is studied in terms of the first
two modes whose eigenvalues are estimated based on the linear
modal differential equations. The real value of the eigenvalues de-
termines the critical flutter speed, and it is found that the relaxation
of the boundary conditions reduces the value of the flutter speed.
The dependence of the natural frequencies (the imaginary parts) on
relaxation parameter for different values of aerodynamic pressure
revealed a drop in the natural frequencies with relaxation and an
increase with dynamic pressure for the first mode. However, the
second-mode natural frequency decreases with dynamic pressure.
The boundaries of panel flutter are obtained in terms of in-plane
load, relaxation parameter, and damping factor. The damping of
the panel exhibits a critical value governed by the relaxation pa-
rameter, below which the damping has a destabilizing effect and
above which it has stabilizing effect. The dependence of the LCO
amplitude on dynamic pressure is obtained for different values of
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relaxation parameter and is found to be bounded between the two
limiting cases of simply supported and clamped—supported bound-
ary conditions. The amplitude time-history records reveal an in-
crease in the modal amplitudes after the end of relaxation because
the boundary conditions are nearly simply supported. However, the
frequency content is governed by the relaxation, geometric non-
linearity, and damping. There is a competition among these three
parameters, which can the frequency content to either increase or
decrease with time.

Under random in-plane loading, the stochastic mean square sta-
bility boundaries are obtained for dynamic pressures that are below
the critical flutter value. As the dynamic pressure increases, but still
below the critical value, the stability region is enlarged because of
aerodynamic damping. Above the critical value the panel modes
achieve random LCO whose mean square is nonzero under zero
in-plane excitation. The time-history records display nonstationary
random fluctuations during the relaxation process, and the scatter
is persistent before and after relaxation. Under random pressure
differential the first mode exhibits more nonstationarity than the
second mode because the first mode acts as a nonlinear filter to the
second mode.
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